flagcounter

free counters

get 100000 visiter in 7 days

Wednesday, April 13, 2011

Human

Human, known taxonomically as Homo sapiens[3][4] (Latin for "wise man" or "knowing man"),[5] are the only living species in the Homo genus of bipedal primates in Hominidae, the great ape family. Anatomically modern humans originated in Africa about 200,000 years ago, reaching full behavioral modernity around 50,000 years ago.[6]
Humans have a highly developed brain, capable of abstract reasoning, language, introspection, and problem solving. This mental capability, combined with an erect body carriage that frees the hands for manipulating objects, has allowed humans to make far greater use of tools than any other living species on Earth. Other higher-level thought processes of humans, such as self-awareness, rationality, and sapience,[7][8][9] are considered to be defining features of what constitutes a "person".[10][11]
Like most higher primates, humans are social animals. However, humans are uniquely adept at utilizing systems of communication for self-expression, the exchange of ideas, and organization. Humans create complex social structures composed of many cooperating and competing groups, from families to nations. Social interactions between humans have established an extremely wide variety of values, social norms, and rituals, which together form the basis of human society. With individuals widespread in every continent except Antarctica, humans are a cosmopolitan species. In January 2011, the human population was estimated to be about 6.89 billion.[12]
Humans are noted for their desire to understand and influence their environment, seeking to explain and manipulate phenomena through science, philosophy, mythology, and religion. This natural curiosity has led to the development of advanced tools and skills, which are passed down culturally; humans are the only species known to build fires, cook their food, clothe themselves, and use numerous other technologies. The study of humans is the scientific discipline of anthropology.

The solar system

The Solar System[a] consists of the Sun and the astronomical objects bound to it by gravity, all of which formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. Of the many objects that orbit the Sun, most of the mass is contained within eight relatively solitary planets[e] whose orbits are almost circular and lie within a nearly flat disc called the ecliptic plane. The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, the gas giants, are substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are composed largely of ices, such as water, ammonia and methane, and are often referred to separately as "ice giants".
The Solar System is also home to two regions populated by smaller objects. The asteroid belt, which lies between Mars and Jupiter, is similar to the terrestrial planets as it is composed mainly of rock and metal. Beyond Neptune's orbit lie trans-Neptunian objects composed mostly of ices such as water, ammonia and methane. Within these two regions, five individual objects, Ceres, Pluto, Haumea, Makemake and Eris, are recognized to be large enough to have been rounded by their own gravity, and are thus termed dwarf planets.[e] In addition to thousands of small bodies[e] in those two regions, various other small body populations, such as comets, centaurs and interplanetary dust, freely travel between regions.
The solar wind, a flow of plasma from the Sun, creates a bubble in the interstellar medium known as the heliosphere, which extends out to the edge of the scattered disc. The hypothetical Oort cloud, which acts as the source for long-period comets, may also exist at a distance roughly a thousand times further than the heliosphere.
Six of the planets and three of the dwarf planets are orbited by natural satellites,[b] usually termed "moons" after Earth's Moon. Each of the outer planets is encircled by planetary rings of dust and other particles

Light

  light or visible light is the portion of electromagnetic radiation that is visible to the human eye, responsible for the sense of sight. Visible light has a wavelength in a range from about 380 or 400 nanometres to about 760 or 780 nm,[1] with a frequency range of about 405 THz to 790 THz. In physics, the term light often comprises the adjacent radiation regions of infrared (at lower frequencies) and ultraviolet (at higher), not visible to the human eye.[2][3]
Primary properties of light are intensity, propagation direction, frequency or wavelength spectrum, and polarization, while its speed, about 300,000,000 meters per second (300,000 kilometers per second) in a vacuum, is one of the fundamental constants of nature.
Light, which is emitted and absorbed in tiny "packets" called photons, exhibits properties of both waves and particles. This property is referred to as the wave–particle duality. The study of light, known as optics, is an important research area in modern physics.
There are many sources of light. The most common light sources are thermal: a body at a given temperature emits a characteristic spectrum of black-body radiation. Examples include sunlight (the radiation emitted by the chromosphere of the Sun at around 6,000 Kelvin peaks in the visible region of the electromagnetic spectrum when plotted in wavelength units [6] and roughly 40% of sunlight is visible), incandescent light bulbs (which emit only around 10% of their energy as visible light and the remainder as infrared), and glowing solid particles in flames. The peak of the blackbody spectrum is in the infrared for relatively cool objects like human beings. As the temperature increases, the peak shifts to shorter wavelengths, producing first a red glow, then a white one, and finally a blue color as the peak moves out of the visible part of the spectrum and into the ultraviolet. These colors can be seen when metal is heated to "red hot" or "white hot". Blue thermal emission is not often seen. The commonly seen blue colour in a gas flame or a welder's torch is in fact due to molecular emission, notably by CH radicals (emitting a wavelength band around 425 nm).
Atoms emit and absorb light at characteristic energies. This produces "emission lines" in the spectrum of each atom. Emission can be spontaneous, as in light-emitting diodes, gas discharge lamps (such as neon lamps and neon signs, mercury-vapor lamps, etc.), and flames (light from the hot gas itself—so, for example, sodium in a gas flame emits characteristic yellow light). Emission can also be stimulated, as in a laser or a microwave maser.
Deceleration of a free charged particle, such as an electron, can produce visible radiation: cyclotron radiation, synchrotron radiation, and bremsstrahlung radiation are all examples of this. Particles moving through a medium faster than the speed of light in that medium can produce visible Cherenkov radiation.
Certain chemicals produce visible radiation by chemoluminescence. In living things, this process is called bioluminescence. For example, fireflies produce light by this means, and boats moving through water can disturb plankton which produce a glowing wake.
Certain substances produce light when they are illuminated by more energetic radiation, a process known as fluorescence. Some substances emit light slowly after excitation by more energetic radiation. This is known as phosphorescence.
Phosphorescent materials can also be excited by bombarding them with subatomic particles. Cathodoluminescence is one example. This mechanism is used in cathode ray tube television sets and computer monitors.

world peace

World Peace is an ideal of freedom, peace, and happiness among and within all nations and/or people. World peace is an idea of planetary non-violence by which nations willingly cooperate, either voluntarily or by virtue of a system of governance that prevents warfare. The term is sometimes used to refer to a cessation of all hostility among all individuals. For example, World Peace could be an end to wars or to fighting between brother and brother or sister and sister.Economic norms theroy links economic conditions with institutions of governance and conflict, distinguishing personal clientelist economies from impersonal market-oriented ones, identifying the latter with permanent peace within and between nations.[11][12]
Through most of human history societies have been based on personal relations: individuals in groups know each other and exchange favors. Today in most lower-income societies hierarchies of groups distribute wealth based on personal relationships among group leaders, a process often linked with clientelism and corruption. Michael Mousseau argues that in this kind of socio-economy conflict is always present, latent or overt, because individuals depend on their groups for physical and economic security and are thus loyal to their groups rather than their states, and because groups are in a constant state of conflict over access to state coffers. Through processes of bounded rationality, people are conditioned towards strong in-group identities and are easily swayed to fear outsiders, psychological predispositions that make possible sectarian violence, genocide, and terrorism.[13]
Market-oriented socio-economies are integrated not with personal ties but the impersonal force of the market where most individuals are economically dependent on trusting strangers in contracts enforced by the state. This creates loyalty to a state that enforces the rule of law and contracts impartially and reliably and provides equal protection in the freedom to contract – that is, liberal democracy. Wars cannot happen within or between nations with market-integrated economies because war requires the harming of others, and in these kinds of economies everyone is always economically better off when others in the market are also better off, not worse off. Rather than fight, citizens in market-oriented socio-economies care deeply about everyone’s rights and welfare, so they demand economic growth at home and economic cooperation and human rights abroad. In fact, nations with market-oriented socio-economies tend to agree on global issues[14] and not a single fatality has occurred in any dispute between them.[15]
Economic norms theory should not be confused with classical liberal theory. The latter assumes that markets are natural and that freer markets promote wealth.[16] In contrast, Economic norms theory shows how market-contracting is a learned norm, and state spending, regulation, and redistribution are necessary to ensure that most everyone can participate in the “social market” economy, which is in everyone’s interests.
.

friendship

Friendship is a form of interpersonal relationship generally considered to be closer than association, although there is a range of degrees of intimacy in both friendships and associations. Friendship and association can be thought of as spanning across the same continuum. The study of friendship is included in the fields of sociology, social psychology, anthropology, philosophy, and zoology. Various academic theories of friendship have been proposed, among which are social exchange theory, equity theory, relational dialectics, and attachment styles.In the sequence of the emotional development of the individual, friendships come after parental bonding and before the pair bonding engaged in at the approach of maturity. In the intervening period between the end of early childhood and the onset of full adulthood, friendships are often the most important relationships in the emotional life of the adolescent, and are often more intense than relationships later in life.[5] However making friends seems to trouble lots of people; having no friends can be emotionally damaging in some cases. Friendships play a key role in suicidal thoughts of girls.[6]
A study by researchers from Purdue University found that post-secondary-education friendships (e.g. college, university) last longer than the friendships before it.[7]
Children with Asperger syndrome and autism usually have some difficulty forming friendships. This is due to the autistic nature of some of their symptoms, which include but are not limited to preferring routine actions to change, and usually lacking good social skills. This does not mean that they are not able to form friendships, however. With time, moderation, and proper instruction, they are able to form friendships after realizing their own strengths and weaknesses.

electricity

Electricity is a general term encompassing a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena, such as lightning, static electricity, and the flow of electrical current in an electrical wire. In addition, electricity encompasses less familiar concepts such as the electromagnetic field and electromagnetic induction.
The word is from the New Latin ēlectricus, "amber-like"[a], coined in the year 1600 from the Greek ήλεκτρον (electron) meaning amber (hardened plant resin), because static electricity effects were produced classically by rubbing amber.
Usage
In general usage, the word "electricity" adequately refers to a number of physical effects. In scientific usage, however, the term is vague, and these related, but distinct, concepts are better identified by more precise terms:
The most common use of the word "electricity" is less precise. It refers to:
Electrical phenomena have been studied since antiquity, though advances in the science were not made until the seventeenth and eighteenth centuries. Practical applications for electricity however remained few, and it would not be until the late nineteenth century that engineers were able to put it to industrial and residential use. The rapid expansion in electrical technology at this time transformed industry and society. Electricity's extraordinary versatility as a source of energy means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and computation. Electrical power is the backbone of modern industrial society, and is expected to remain so for the foreseeable future.[1]

water

Water is a chemical substance with the chemical formula H2O. Its molecule contains one oxygen and two hydrogen atoms connected by covalent bonds. Water is a liquid at ambient conditions, but it often co-exists on Earth with its solid state, ice, and gaseous state (water vapor or steam). Water also exists in a liquid crystal state near hydrophilic surfaces.[1][2]
Water covers 70.9% of the Earth's surface,[3] and is vital for all known forms of life.[4] On Earth, it is found mostly in oceans and other large water bodies, with 1.6% of water below ground in aquifers and 0.001% in the air as vapor, clouds (formed of solid and liquid water particles suspended in air), and precipitation.[5] Oceans hold 97% of surface water, glaciers and polar ice caps 2.4%, and other land surface water such as rivers, lakes and ponds 0.6%. A very small amount of the Earth's water is contained within biological bodies and manufactured products.
Water on Earth moves continually through a cycle of evaporation or transpiration (evapotranspiration), precipitation, and runoff, usually reaching the sea. Over land, evaporation and transpiration contribute to the precipitation over land.
Clean drinking water is essential to humans and other lifeforms. Access to safe drinking water has improved steadily and substantially over the last decades in almost every part of the world.[6][7] There is a clear correlation between access to safe water and GDP per capita.[8] However, some observers have estimated that by 2025 more than half of the world population will be facing water-based vulnerability.[9] A recent report (November 2009) suggests that by 2030, in some developing regions of the world, water demand will exceed supply by 50%.[10] Water plays an important role in the world economy, as it functions as a solvent for a wide variety of chemical substances and facilitates industrial cooling and transportation. Approximately 70% of freshwater is consumed by agriculture.[11]

internet

The Internet is a global system of interconnected computer networks that use the standard Internet Protocol Suite (TCP/IP) to serve billions of users worldwide. It is a network of networks that consists of millions of private, public, academic, business, and government networks, of local to global scope, that are linked by a broad array of electronic, wireless and optical networking technologies. The Internet carries a vast range of information resources and services, such as the inter-linked hypertext documents of the World Wide Web (WWW) and the infrastructure to support electronic mail.
Most traditional communications media including telephone, music, film, and television are reshaped or redefined by the Internet, giving birth to new services such as Voice over Internet Protocol (VoIP) and IPTV. Newspaper, book and other print publishing are adapting to Web site technology, or are reshaped into blogging and web feeds. The Internet has enabled or accelerated new forms of human interactions through instant messaging, Internet forums, and social networking. Online shopping has boomed both for major retail outlets and small artisans and traders. Business-to-business and financial services on the Internet affect supply chains across entire industries.
The origins of the Internet reach back to research of the 1960s, commissioned by the United States government in collaboration with private commercial interests to build robust, fault-tolerant, and distributed computer networks. The funding of a new U.S. backbone by the National Science Foundation in the 1980s, as well as private funding for other commercial backbones, led to worldwide participation in the development of new networking technologies, and the merger of many networks. The commercialization of what was by the 1990s an international network resulted in its popularization and incorporation into virtually every aspect of modern human life. As of 2009, an estimated quarter of Earth's population used the services of the Internet.
The Internet has no centralized governance in either technological implementation or policies for access and usage; each constituent network sets its own standards. Only the overreaching definitions of the two principal name spaces in the Internet, the Internet Protocol address space and the Domain Name System, are directed by a maintainer organization, the Internet Corporation for Assigned Names and Numbers (ICANN). The technical underpinning and standardization of the core protocols (IPv4 and IPv6) is an activity of the Internet Engineering Task Force (IETF), a non-profit organization of loosely affiliated international participants that anyone may associate with by contributing technical expertise.

time

Time is a part of the measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify rates of change such as the motions of objects.[1] The temporal position of events with respect to the transitory present is continually changing; future events become present, then pass further and further into the past. Time has been a major subject of religion, philosophy, and science, but defining it in a non-controversial manner applicable to all fields of study has consistently eluded the greatest scholars.
Time is one of the seven fundamental physical quantities in the International System of Units. Time is used to define other quantities — such as velocity — so defining time in terms of such quantities would result in circularity of definition.[2] An operational definition of time, wherein one says that observing a certain number of repetitions of one or another standard cyclical event (such as the passage of a free-swinging pendulum) constitutes one standard unit such as the second, is highly useful in the conduct of both advanced experiments and everyday affairs of life. The operational definition leaves aside the question whether there is something called time, apart from the counting activity just mentioned, that flows and that can be measured. Investigations of a single continuum called spacetime bring questions about space into questions about time, questions that have their roots in the works of early students of natural philosophy.
Among prominent philosophers, there are two distinct viewpoints on time. One view is that time is part of the fundamental structure of the universe, a dimension in which events occur in sequence. Sir Isaac Newton subscribed to this realist view, and hence it is sometimes referred to as Newtonian time.[3][4] Time travel, in this view, becomes a possibility as other "times" persist like frames of a film strip, spread out across the time line. The opposing view is that time does not refer to any kind of "container" that events and objects "move through", nor to any entity that "flows", but that it is instead part of a fundamental intellectual structure (together with space and number) within which humans sequence and compare events. This second view, in the tradition of Gottfried Leibniz[5] and Immanuel Kant,[6][7] holds that time is neither an event nor a thing, and thus is not itself measurable nor can it be travelled.
Temporal measurement has occupied scientists and technologists, and was a prime motivation in navigation and astronomy. Periodic events and periodic motion have long served as standards for units of time. Examples include the apparent motion of the sun across the sky, the phases of the moon, the swing of a pendulum, and the beat of a heart. Currently, the international unit of time, the second, is defined in terms of radiation emitted by caesium atoms (see below). Time is also of significant social importance, having economic value ("time is money") as well as personal value, due to an awareness of the limited time in each day and in human life spans.

Tuesday, April 12, 2011

COMPUTER

computer isA computer is a programmable machine designed to sequentially and automatically carry out a sequence of arithmetic or logical operations. The particular sequence of operations can be changed readily, allowing the computer to solve more than one kind of problem.

Conventionally a computer consists of some form of memory for data storage, at least one element that carries out arithmetic and logic operations, and a sequencing and control element that can change the order of operations based on the information that is stored. Peripheral devices allow information to be entered from external source, and allow the results of operations to be sent out.

A computer's processing unit executes series of instructions that make it read, manipulate and then store data. Conditional instructions change the sequence of instructions as a function of the current state of the machine or its environment.

The first electronic computers were developed in the mid-20th century (1940–1945). Originally, they were the size of a large room, consuming as much power as several hundred modern personal computers (PCs).[1]

Modern computers based on integrated circuits are millions to billions of times more capable than the early machines, and occupy a fraction of the space.[2] Simple computers are small enough to fit into mobile devices, and can be powered by a small battery. Personal computers in their various forms are icons of the Information Age and are what most people think of as "computers". However, the embedded computers found in many devices from MP3 players to fighter aircraft and from toys to industrial robots are the most numerous.